LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Robotics and Artificial Intelligence (706)

Bachelor of Engineering (B.E.) – Semester – I

Course Code:	017062192	Teaching Scheme			
Course Name:	IOT Workshop - Laboratory	Lecture (L)	Tutorial (T)	Practical (P)	Credit
Category of Course:	Engineering Science Course (ESC)	0	0	4	2
Prerequisite Course:		0	U	4	2

Sr No.	Practical Title	Link to Theory Syllabus
1	Understating PROTEUS, ARDUINO (Nano/ Uno/ Mega), NODEMCU/ESP32	
2	IR & Ultrasonic Sensor Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
3	PIR Sensor Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
4	Gas Sensor & Flame sensor Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
5	LM35 Interface Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
6	Moisture Sensor & DHT11/22 Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
7	2-Channel Relay Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
8	Display (16x 2/ 16x x4 LCD) Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
9	Working on soldering with GPP	
10	MINI PROJECT	

Major Components/ Equipment				
Sr. No.	Component/Equipment	Specification		
1	PROTEUS Software			
2	Controller board: ARDUINO (Nano/ Uno/ Mega), NODEMCU/ESP32	Microcontroller ATmega328. Operating Voltage (logic level): 5 V. Input Voltage (recommended): 7-12 V. Input Voltage (limits): 6-20 V. Digital I/O Pins : 14 (of which 6 provide PWM output) Analog Input Pins: 8. DC Current per I/O Pin: 40 mA.		
3	IR Sensor	VCC: External 3.3V-5V voltage (can be directly connected to 5v MCU and 3.3v MCU) GND: GND External OUT: Small board digital output interfaces (0 and 1)		
4	Ultrasonic Sensor	Transmitter & ReceiverTechnology UsedNon-Contact TechnologyOperating Voltage5 VOperating Frequency4 MHzDetection Range2cm to 400cmMeasuring Angle30°Resolution3mmOperating Current<15mA		
5	PIR Sensor	The HC-SR501 Operating Voltage 5 V to 20 V Current consumption: 65 mA Output Voltage: 3.3 V on condition Delay time: 5 seconds to 5 minute. Sensitivity Range: 3 meter to 7 meters		
6	Gas Sensor	MQ2 Operating voltage: 5V Load resistance: 20 K Ω Heater resistance: 33 $\Omega \pm 5\%$ Heating consumption: <800mw Sensing Resistance: 10 K Ω – 60 K Ω Concentration Scope: 200 – 10000ppm Preheat Time: Over 24 hour		
7	Flame sensor	Operating Voltage: 3.3V to 5V DC Operating Current: 15ma Output Digital - 0V to 5V, Adjustable trigger level from preset		

		Output Analog - 0V to 5V based on infrared radiation from fire flame falling on the sensor
		LEDs indicating output and power
		PCB Size: 3.2cm x 1.4cm
		LM393 based design
8		Calibrated directly in Celsius (Centigrade)
		Linear + 10.0 mV/ C scale factor
		0.5 C accuracy guaranteeable (at +25 C)
		Rated for full -55 to +150 C range
		Suitable for remote applications
	LM35	Low cost due to wafer-level trimming
		Operates from 4 to 30 volts
		Less than 60 A current drain
		Low self-heating, 0.08 C in still air
		Nonlinearity only 1/4 C typical
0		Low impedance output, 0.1 W for 1 mA load
9		Operating Voltage 3.3V-5V.
		Module Dual Output mode, a simple digital output, and analog output more accurate.
		With fixed bolt hole for easy installation.
		Small PCB board size: 3cm * 1.6cm.
	Moisture Sensor	Power indicator (red) and the digital switch output indicator (green).
	Wolsture Sensor	Using LM393 comparator chip, stable.
		VCC external 3.3V-5V
		GND GND External
		DO small board digital output interfaces (0 and 1)
		AO small board analog output interface
10		Super compact size
		Super low power consumption
		Super low voltage operation
		Standard I2C and 1-wire interface.
		Semi-conductor technology
		Sensing range
		Temperature: $-20 \sim +60 \text{ C}$
		Humidity: 20-95 RH
		Humidity:
	DHT11/22 Sensor	Resolution: 0.1%RH
		Repeat: -+ 1%RH
		Precision 25C @ -+5RH
		Temperature:
		Resolution: 0.1C
		Repeat: -+0.2C
		Precision: 25C @ -+0.5C
		Power: DC 2.7-5.5V
		Normal current 1mA
		Standby current 60uA
		Sample cycle: > 2 seconds
		Pin interface: 1. VDD 2. SDA 3. GND 4. SCL (connect to GND when use as 1-wire)
11	Relay	2-Channel, 5 A, 230V
12	LCD	16x 2/ 16x4
13	Soldering iron along with soldering flux & wax,	
	De-soldering pump, standard size GPP	-

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)						
L :	0	T:	0	P:	4	
Note : In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%						
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage	
Theory			MCQ	0%	0	
Theory	0		Theory Descriptive	0%	0	
Theory	- 0		Formulas and Derivation	0%	0	
Theory			Numerical	0%	0	
Expected Theory %	0%	2	Calculated Theory %	0%	0	
Practical			Individual Project	0%	0	
Practical			Group Project	70%	70	
Practical	2		Internal Practical Evaluation (IPE)	0%	0	
Practical			Viva	30%	30	
Practical			Seminar	0%	0	
Expected Practical %	100%		Calculated Practical %	100%	100	
Overall %	100%			100%	100	

Course	Course Outcome			
	Upon completion of the course students will be able to			
CO1	Learning usage of tools for IOT environment			
CO2	Learn sensor Interfacing with various controller boards for IOT application.			
CO3	Understanding applications of various Sensors			
CO4	Learning Hardware Programming with Microcontroller.			
Suggest	Suggested Reference Books			
1	Beginning Arduino, Michael McRobetrs Technology in Action			
2	Exploring Arduino, Jeremy Blum. Wiley			
3	NodeMCU ESP8266 Communication Methods and Protocols : Programming with Arduino IDE, Manoj R. Thakur			

List of Open Source Software/Learning website		
1	http://arduino.cc	
2	www.instructables.com/id/Arduino-Projects/	
3	http://www.jeremyblum.com/category/arduino-	
4	https://www.labcenter.com/downloads/	
5	https://rntlab.com/learn-esp32-welcome/	

Practical Project/Hands on Project					
Sr. No.	Project List	Linked with Unit			
1	Design Mini Weather Station using Arduino Uno/NODEMCU.				
2	Real time Data Logger Using Arduino Uno/NODEMCU.				
3	Smart Home Automation Using Arduino Uno/NODEMCU.				
4	Smart Irrigation System Using Arduino Uno/NODEMCU.				
5	Health Monitoring System Using Arduino Uno/NODEMCU.				
6	Advance Fire Alarm System Using Arduino Uno/NODEMCU.				
7	Smart Room Temperature Using Arduino Uno/NODEMCU.				