LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering

Bachelor of Engineering (B.E.) – Semester - VI

Course Code:	017103601		Teaching Scheme				
Course Name:	rse Name: Dynamics of Machinery		Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
Category of Course:	Professional Core Course (PCC)						
Prerequisite Course:	Engineering Mechanics (017102291), Strength of Materials (017103391)		4	1	0	5	5 40

Syllabus						
Unit No.	Торіс	Prerequisite Topic	Teachi ng Hours			
	Balancing of Rotating Masses					
01	1.1 Concept of static and dynamic balancing	Centrifugal force (017102291-Unit-02)	5			
	1.2 Analysis of effect of unbalanced masses in single plane and multiple plane in	Moments and couple (017102291-Unit-03)	(12%)			
	rotating elements		-			
	1.3 Numerical based on bearing reactions.					
	Balancing of Reciprocating Masses					
02	2.1 Balancing of reciprocating mass		(12%)			
	2.2 Balancing of locomotives2.3 Effects of partial balancing in locomotives, secondary balancing		-			
	Gyroscope		-			
	3.1 Angular velocity and angular acceleration	Moments and couple (017102291-Unit-03)	4			
03	3.2 Gyroscopic couple	Moments and couple (017102291-0111-05)	(10%)			
	3.3 Gyroscopic effect on naval ships and aero plane		-			
	3.4 Stability of an automobile four-wheeler	Gyroscopic couple (017103601-Unit-10.2)				
	Introduction to Mechanical Vibrations					
	4.1 Phenomenon of vibration (Cause, advantages, and disadvantages)		3			
04	4.2 Simple harmonic motion (Terminology and basic Concepts)	Waves and Motion (G-002-Unit-05)	(8%)			
	4.3 Types of vibration	waves and Motion (G-002-Unit-03)				
	4.4 Equivalents of springs and dampers (Spring force and damping force)					
	Undamped Free Vibrations					
	5.1 Determination of natural frequency by equilibrium method	Inertia force (017102291-Unit-02)	3			
05	5.2 Energy method		(8%)			
	5.3 Rayleigh's method	Simple harmonic motion (017103601-Unit-3.2)	_ ` ´			
	5.4 Undamped free transverse vibration					
	Damped Free Vibration	r				
	6.1 Dampers and methods of dampingTypes of Damping (G-002-Unit-5.5)					
06	6.2 General solution for damped free vibration and damping coefficient and factor		5 (12%)			
	6.3 Under damped, over damped and critical damped system	General solution for damped free vibration (017103601-Unit-5.2)	(12/0)			
	6.4 Damped natural frequency and logarithmic decay	Under damped (017103601-Unit-5.3)				
	Damped Forced Vibration		1			
	7.1 Analytical solution of forced vibrations with harmonic excitation system and Inertia force (017102291-Unit-02)					
	vector representation	Damping force (017103601-Unit-5.1)	5			
07	7.2 Magnification factor					
	7.3 Phase difference and transmissibility on frequency of excitation for various	Analytical solution of forced vibrations				
	damping factors	(017103601-Unit-6.1)				
	7.4 Concept of vibration isolation					
	Torsional Vibration					
08	8.1 Zero frequency and node Point		- 3.5 (9%)			
	8.2 Torsionally equivalent shaft	Torsion (017103391-Unit-09)				
	8.3 Torsional vibration in single rotor and two rotor system					
	Rotating Unbalance					
00	9.1 Whirling of shaft		3 (8%)			
00			(070)			
09	9.2 Critical speed of a shaft carrying rotor with and without damping.	Shear force and banding moment				

	Vibration Measurement				
	10.1 Vibration measurement process				
	10.2 Classification of vibration measuring instruments		3.5		
10	10.3 Vibrometers-Amplitude measuring instruments	Damped forced vibration (017103601-Unit-06)	(9%)		
	10.4 Velocity pick-ups and acceleration pick-ups				
	10.5 Frequency measuring instruments				
	10.6 Measurement of damping	Logarithmic decay (017103601-Unit-5.4)			

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)							
L:	4	T:	1	P:	0		
Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%							
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage		
Theory			MCQ	26%	26		
Theory	5		Theory Descriptive	00%	00		
Theory			Formulas and Derivation	19%	19		
Theory			Numerical	55%	55		
Expected Theory %	100%	5	Calculated Theory %	100%	100		
Practical			Individual Project	0%	0		
Practical		0	Group Project	0%	0		
Practical	0		Internal Practical Evaluation (IPE)	0%	0		
Practical			Viva	0%	0		
Practical			Seminar	0%	0		
Expected Practical %	0%		Calculated Practical %	0%	0		
Overall %	100%			100%	100		

Course	Outcome
	Upon completion of the course students will be able to
1	Minimize unbalance in mechanical systems by means of static and dynamic balancing.
2	Understanding the gyroscopic effect and fundamentals of mechanical vibrations with the application of different methods to derive the equation of
	motion.
3	Analyze damped free and force vibration.
4	Demonstrate the torsional vibrations, determine critical speed of the shaft and understand vibration measuring instruments.
Suggeste	ed Reference Books
1	Theory of Machines by S. S. Rattan, McGraw Hill Education
2	Mechanical Vibrations by S S Rao, Pearson.
3	Kinematics and Dynamics of Machinery by R L Norton, McGraw-Hill.
4	Theory of Machines by R. S. Khurmi and J. K. Gupta, S. Chand and Company Ltd.
5	Dynamics of Machinery by Farazdak Haideri, Nirali Prakashan

List of Open Source Software/Learning website

1	http://www.nptel.ac.in
2	www.skill lync.com
3	www.edx.com
4	www.Coursera.org

Real Pra	Real Practical Problem/ Hands on Project				
Sr. No.	Real Practical Problem	Linked with Unit			
1	Calculate the Static and dynamic balancing of peltonwheel turbine.	Unit 01			

2	How to do wheel balancing of a car and by which equipment?	Unit 02
3	Calculate frequency of a swing in any garden nearby your home, and check is it equal to what we found in class.	Unit 03,04
4	Find the Damping factor of a door closer by checking the displacement and velocity at a particular time interval.	Unit 05
5	 Suppose you are riding your bike over a uneven road surface find out critical speed and Amplitude of Vibration in your bike Data you have to gather:- Compression of spring because of weight Amplitude and wavelength of road profile approximated by a sine wave Speed of Bike? 	Unit 06
6	Find out frequency of torsion vibration by viscous damping method.	Unit 07
7	In machine one shaft is attached horizontally is simply supported at both ends by bearings. A rotor is attached at middle of the horizontal shaft.	Unit 08,09
8	If there is a racing car and it will overturn, what are the causes of overturning and accident due to motion effects?	Unit 10