LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering (710)

Bachelor of Engineering (B.E.) – Semester – V

Course Code:	017103591	Teaching Scheme				
Course Name:	Heat Transfer	Lectu re (L)	Tuto rial (T)	Pract ical (P)	Cre dit	Tota l Hou rs
Category of Course:	Professional Core Course (PCC)					
Prerequisite Course:	Mathematics 1 (017101191), Physics (017101192), Electrical and Electronics Engineering (017102292), Thermodynamics 1 (017103301), Fluid Mechanics (017103491)	5	0	2	6	50

Syllabus					
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teac hing Hour s	
	Conduction: 1-D Steady State H	eat Conduction			
	1.1 Modes of heat transfer				
	1.2 Thermal conductivity and diffusivity				
	1.3 Heat conduction through plane and composite walls	Basic differentiation			
01	1.4 Heat conduction through hollow and composite cylinders and spheres	and integration (017101191-Unit-03)	2.4 Critical thickness of Insulation(017103591- Unit-02)	9 (18%)	
	1.5 Electrical analogy and overall heat transfer coefficient	DC circuits (017102292-Unit-01) Modes of heat transfer (017103591-Unit-1.1)			
	1.6 Critical thickness of Insulation	(017103591-Unit-1.1) Steady state heat conduction (017103591-Unit-1.1, 1.2, 1.3)			
	Heat Transfer from Extended S	urface			
	2.1 Purpose of fins and heat flow through rectangular fin	Modes of heat transfer			
02	2.2 Infinitely long fin and fin insulated at the tip	(017103591-Unit-1.1), Basic differentiation		6 (12%)	
	2.3 Fin losing heat at the tip of finite length	and integration (017101191-Unit-03)			
	2.4 Efficiency and effectiveness of	All cases of fin			

	fin.	(017103591-Unit-2.1, 2.2, 2.3)		
	Conduction: Unsteady State Heat	at Conduction		
03	3.1 Lump system	Heat capacity		1
		(017103301-Unit-1),		3
03	3.2 Transient heat conduction	Basic differentiation		(6%)
1	5.2 Transient heat conduction	and integration		
		(017101191-Unit-03)		
	Convection: Forced Convection			
	4.1-Dimensional analysis applied to	Dimensional analysis		
	forced convection	(017103491-Unit-7)		_
0.4	4.2 Dimensional less numbers-	Reynolds number		5
04	Reynolds, Prandtl, Stanton	(017103491-Unit-10.1)		(10%)
	4.3 Thermal and hydrodynamic			
	boundary layer thicknesses4.4 Empirical correlations for forced			-
	convection (Flat plate, cylinder, tube)			
	Convection: Free Convection	D' ' 1 1 '		-
	5.1-Dimensional analysis applied to free convection	Dimensional analysis (017103491-Unit-7)		
	5.2 Characteristic length or equivalent	(01/103491-0111-7)		-
05	diameter			5
	5.3 Dimensional less numbers-			(10%)
	Nusselt, Grashoff, Prandtl			
	5.4 Empirical correlations for free			
	convection (Flat plate, cylinder, tube)			
	Thermal Radiation: Basic Relat	ions		
	6.1 Electromagnetic waves and its	Waves (017101192-		
	spectrum	Unit-05)		
	6.2 Stefan-Boltzmann law	Modes of heat transfer		
		(017103591-Unit-1.1)		_
	6.3 Radiation properties (Emission	$W_{017101102}$		5
06	properties absorption and reflection of radiant energy, emission, black and	Waves (017101192- Unit-05)		(10%)
	non-black bodies)	01111-05)		(1070)
	6.4 Laws of radiation – Planck,			-
	Wein's displacement, Kirchhoff			
	6.5 Intensity of radiation and solid	Trigonometry and		
	angle, Lambert's cosine law.	geometry (017101191-		
		Unit-02)		
	Thermal Radiation Between Sur	rfaces		
	7.1 Radiation heat exchange between	Intensity of radiation]
	black surface	and solid angle		
07		(017103591-Unit-7.5)		_
	7.2 Geometric configuration factor			5
07	7.3 Grey body radiation exchange			(10%)
	between surfaces of unit configuration factors			
				1
	7.4 Electrical analogy to simple	DC circuits		
	problems and radiation shield	(017102292-Unit-01)		
Heat Euchongong analysis by I MCD Mathad				
08	Heat Exchangers analysis by LN			5 (10%)
	8.1 Classification and analysis of heat	Heat capacity		(1070)

	exchanger8.2 LMTD calculation for parallel flow heat exchanger8.3 LMTD calculation for counter flow heat exchanger8.4 Fouling factors and overall heat transfer coefficient	(017103301-Unit-1)Heatcapacity(017103301-Unit-1),Basicdifferentiationandintegration(017101191-Unit-03)	9.1 & 9.2 Effectiveness – NTU method for parallel & counter flow heat exchanger (017103591-Unit-09) 	-
09	 Heat Exchangers analysis by NT 9.1 Heat exchanger Effectiveness & Number of transfer unit 9.2 Effectiveness – NTU method for parallel flow heat exchanger 9.3 Effectiveness – NTU method for counter flow heat exchanger 	 LMTD for Parallel & Counter flow Heat		5 (10%)
10	Application of Solar Heat Trans10.1 Introduction10.2 Solar Radiation Geometry(Altitude angle, Zenith angle,Azimuth angle)10.3 Natural Circulation Solar WaterHeater10.4 Forced Circulation Solar WaterHeater10.5 Passive Solar Distillation (Single slope solar still)		 	2 (4%)

Major	Major Components/ Equipment		
Sr. No.	Component/Equipment		
1	Thermal conductivity measuring apparatus by spherical method		
2	Thermal conductivity measuring apparatus by cylindrical method		
3	Pin fin apparatus		
4	Natural convection apparatus		
5	Forced convection apparatus		
6	Stefan-Boltzmann apparatus		
7	Emissivity measurement apparatus		

Sr No.	Practical Title	Link to Theory Syllabus
1	To find thermal conductivity of insulating powder by spherical method	Unit-1
2	To find thermal conductivity of a given insulating materials by cylindrical method	Unit-1
3	To find heat transfer through pin fin apparatus	Unit-2
4	To find surface heat transfer coefficient for force convection heat transfer	Unit-4
5	To find out coefficient of natural convection	Unit-5
6	To find emissivity of given plate	Unit-6

7	To find Stefan Boltźman constant by Stefan Boltźman apparatus	Unit-6
8	To determine heat loss in Pipe-in-Pipe heat exchanger	Unit-8

-	Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)						
L :	5	Т:	0	P:	2		
subject. Each Test will b	Note : In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%						
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage		
Theory			MCQ	16%	<mark>19</mark>		
Theory			Theory Descriptive	0%	0		
Theory	5		Formulas and Derivation	34%	40		
Theory			Numerical	34%	<mark>41</mark>		
Expected Theory %	84%	6	Calculated Theory %	84%	100		
Practical			Individual Project	0%	0		
Practical			Group Project	0%	0		
Practical	1		Internal Practical Evaluation (IPE)	11%	70		
Practical			Viva	5%	30		
Practical			Seminar	0%	0		
Expected Practical %	16%		Calculated Practical %	20%	100		
Overall %	100%			100%	200		

Cour	Course Outcome		
	Upon completion of the course students will be able to		
1	identify the modes of heat transfer for given practical applications		
2	analyze the performance of convective heat transfer coefficient for free and force convection.		
3	apply the concepts of radiation heat transfer phenomena.		
4	evaluate and design of heat exchanger and understand the basic concept of heat transfer for solar		
	thermal applications.		

Sugg	Suggested Reference Books		
1	Heat and Mass Transfer by R K Rajput, S.Chand Publication		
2	Heat and Mass Transfer: Fundamentals and Application by Yunus Cengel, McGraw Hill		
3	Heat and Mass Transfer by P.K. Nag, McGraw Hill		
4	Heat Transfer by J P Holman, McGraw Hill		
5	Heat Transfer: Principles and Applications by Dutta, Binay K, PHI Publication		
6	R. C. Sachdeva, Fundamentals of Heat and Mass Transfer, New Age International Publications,		
	2012.		

List o	List of Open Source Software/Learning website		
1	nptel.ac.in		
2	Cosmolearning.org		
3	www.learnerstv.com		
4	MIT OCW lecture on introduction to heat transfer		
5	5 Engineering Wikia-Heat Transfer		
6	Heat and Mass Transfer – Mechanical Engineering Handbook		

Pract	ical Project/Hands on Project	
Sr. No.	Project List	Linked with Unit
1	Measure the Thermal Conductivity of a Material. Determine the thermal conductivity of the sample with the help of thermocouple and heater.	Unit 01
2	Heat Loss through a Wall Find out heat loss from the wall of your house on particular day. Data needs 1. Hight, Width and Thickness of the wall 2. Thermal conductivity of the material of the wall Inner and outer surface temperature of the wall	Unit 01
3	Increase heat transfer rate of radiator wall by using extended surfaces. (Fins) Data needs 1. Temperature of wall 2. Extended surface's material properties and dimensions Surrounding fluid thermal properties	Unit 02
4	Predicting the Time of Death A person is found dead at particular time in a room. From the temperature of the body find out the time when he was died	Unit 03
5	 Cooling by Forced air If there is a hot cup of tea on a table under a fan. Find out heat transfer rate by convection mode of heat transfer for both conditions. 1. When fan is off 2. When fan is on 	Unit 04,05

6	Emission of Radiation (Visible Range) from a Lightbulb The temperature of the filament of an incandescent lightbulb is 2500 K. Assuming the filament to be a blackbody, determine the fraction of the radiant energy emitted by the filament that falls in the visible range	Unit 06,07
7	Design Heat Exchanger Design heat exchanger for cool of hot water.	Unit 08,09
8	Heat Transfer Analysis of Solar Water Heater To understand heat transfer analysis of Solar water heater.	Unit 10