LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Information Technology (702)

Bachelor of Engineering (B.E.) – Semester – I

Course Code:	01702192	
Course Name:	IOT Workshop - Laboratory	
Category of Course:	Engineering Science Course (ESC)	
Prerequisite Course:		

Teaching Scheme				
Lecture (L)	Tutorial (T)	Practical (P)	Credit	
0	0	4	2	

Sr No.	Practical Title	Link to Theory Syllabus
1	Understating PROTEUS, ARDUINO (Nano/ Uno/ Mega), NODEMCU/ESP32	
2	IR & Ultrasonic Sensor Interfacing with ARDUINO/NODEMCU/ESP32 & Simulation with PROTEUS	
3	PIR Sensor Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
4	Gas Sensor & Flame sensor Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
5	LM35 Interface Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
6	Moisture Sensor & DHT11/22 Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
7	2-Channel Relay Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
8	Display (16x 2/ 16x x4 LCD) Interfacing with ARDUINO /NODEMCU/ESP32 & Simulation with PROTEUS	
9	Working on soldering with GPP	
10	MINI PROJECT	

Sr. No.	Iajor Components/ Equipment r. No. Component/Equipment Specification				
	PROTEUS Software	•			
1	TROTEOS SOITWAIC				
	Controller board: ARDUINO (Nano/ Uno/ Mega),	Microcontroller ATmega328.			
	NODEMCU/ESP32	Operating Voltage (logic level): 5 V.			
		Input Voltage (recommended): 7-12 V.			
2		Input Voltage (limits): 6-20 V.			
		Digital I/O Pins: 14 (of which 6 provide PWM output)			
		Analog Input Pins: 8.			
		DC Current per I/O Pin: 40 mA.			
		VCC: External 3.3V-5V voltage (can be directly connected to 5v MCU and 3.3v MCU)			
3	IR Sensor	GND: GND External			
J		OUT: Small board digital output interfaces (0 and 1)			
		Transmitter & Receiver			
		Technology Used Non-Contact Technology			
		Operating Voltage 5 V			
		Operating Frequency 4 MHz			
4	Ultrasonic Sensor	Detection Range 2cm to 400cm			
		Measuring Angle 30°			
		Resolution 3mm			
		Operating Current <15mA			
		Sensor Dimensions 45mm x 20mm x 15mm			
5		The HC-SR501 Operating Voltage 5 V to 20 V			
	DID Conson	Current consumption: 65 mA			
	PIR Sensor	Output Voltage: 3.3 V on condition			
		Delay time: 5 seconds to 5 minute.			
		Sensitivity Range: 3 meter to 7 meters			
6		MQ2			
		Operating voltage: 5V			
		Load resistance: $20 \text{ K}\Omega$			
	Gas Sensor	Heater resistance: $33\Omega \pm 5\%$			
		Heating consumption: <800mw			
		Sensing Resistance: $10 \text{ K}\Omega - 60 \text{ K}\Omega$			
		Concentration Scope: 200 – 10000ppm			
	Preheat Time: Over 24 hour				
7		Operating Voltage: 3.3V to 5V DC			
	Flame sensor	Operating Current: 15ma			
		Output Digital - 0V to 5V, Adjustable trigger level from preset			

		Output Analog - 0V to 5V based on infrared radiation from fire flame falling on the sensor
		LEDs indicating output and power
		PCB Size: 3.2cm x 1.4cm
		LM393 based design
8		Calibrated directly in Celsius (Centigrade)
		Linear + 10.0 mV/ C scale factor
		0.5 C accuracy guaranteeable (at +25 C)
		Rated for full -55 to +150 C range
		Suitable for remote applications
	LM35	Low cost due to wafer-level trimming
		Operates from 4 to 30 volts
		Less than 60 A current drain
		Low self-heating, 0.08 C in still air
		Nonlinearity only 1/4 C typical
		Low impedance output, 0.1 W for 1 mA load
9		Operating Voltage 3.3V-5V.
		Module Dual Output mode, a simple digital output, and analog output more accurate.
		With fixed bolt hole for easy installation.
		Small PCB board size: 3cm * 1.6cm.
	Miles	Power indicator (red) and the digital switch output indicator (green).
	Moisture Sensor	Using LM393 comparator chip, stable.
		VCC external 3.3V-5V
		GND GND External
		DO small board digital output interfaces (0 and 1)
		AO small board analog output interface
10		Super compact size
		Super low power consumption
		Super low voltage operation
		Standard I2C and 1-wire interface.
		Semi-conductor technology
		Sensing range
		Temperature: -20 ~ +60 C
		Humidity: 20-95 RH
		Humidity:
		Resolution: 0.1%RH
	DHT11/22 Sensor	Repeat: -+ 1%RH
		Precision 25C @ -+5RH
		Temperature:
		Resolution: 0.1C
		Repeat: -+0.2C
		Precision: 25C @ -+0.5C
		Power: DC 2.7-5.5V
		Normal current 1mA
		Standby current 60uA
		Sample cycle: > 2 seconds
		Pin interface: 1. VDD 2. SDA 3. GND 4. SCL (connect to GND when use as 1-wire)
11	Relay	2-Channel, 5 A, 230V
11		
12	LCD	16x 2/ 16x4
	LCD Soldering iron along with soldering flux & wax,	16x 2/16x4

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)

L: 0 T: 0 P: 4

Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject.

Each Test will be of 25 Marks.

Each Test Syllabus Weightage: Range should be 20% - 30%

Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage
Theory			MCQ	0%	0
Theory	0		Theory Descriptive	0%	0
Theory	U		Formulas and Derivation	0%	0
Theory			Numerical	0%	0
Expected Theory %	0%	2	Calculated Theory %	0%	0
Practical			Individual Project	0%	0
Practical	2		Group Project	70%	70
Practical			Internal Practical Evaluation (IPE)	0%	0
Practical			Viva	30%	30
Practical		Seminar	0%	0	
Expected Practical %	100%		Calculated Practical %	100%	100
Overall %	100%			100%	100

Course	Course Outcome			
	Upon completion of the course students will be able to			
CO1	Learning usage of tools for IOT environment			
CO2	Learn sensor Interfacing with various controller boards for IOT application.			
CO3	Understanding applications of various Sensors			
CO4	Learning Hardware Programming with Microcontroller.			
Suggest	Suggested Reference Books			
1	Beginning Arduino, Michael McRobetrs Technology in Action			
2	Exploring Arduino, Jeremy Blum. Wiley			
3	NodeMCU ESP8266 Communication Methods and Protocols: Programming with Arduino IDE, Manoj R. Thakur			

List of Open Source Software/Learning website		
1	http://arduino.cc	
2	www.instructables.com/id/Arduino-Projects/	
3	http://www.jeremyblum.com/category/arduino-	
4	https://www.labcenter.com/downloads/	
5	https://rntlab.com/learn-esp32-welcome/	

Practica	Practical Project/Hands on Project				
Sr. No.	Project List	Linked with Unit			
1	Design Mini Weather Station using Arduino Uno/NODEMCU.				
2	Real time Data Logger Using Arduino Uno/NODEMCU.				
3	Smart Home Automation Using Arduino Uno/NODEMCU.				
4	Smart Irrigation System Using Arduino Uno/NODEMCU.				
5	Health Monitoring System Using Arduino Uno/NODEMCU.				
6	Advance Fire Alarm System Using Arduino Uno/NODEMCU.				
7	Smart Room Temperature Using Arduino Uno/NODEMCU.				