LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Chemical Engineering

$Bachelor\ of\ Technology\ (B.E.)-Semester\ \textbf{-}\ VI$

Course Code:	017084602
Course Name:	Process Equipment Design
Category of Course:	Professional Elective Course-II (PEC-II)
Prerequisite Course:	Fluid Mechanics, Heat Transfer, Mass Transfer-II

Teaching Scheme				
Lecture (L)	Tutorial (T) Practical (P) Credit Total Hou			
3	0	2	4	30

	Syllabus				
Unit No.	Topic	Prerequisite Topic	Teaching Hours		
	Process Design of Heat Exchanger				
	1.1 Shell & Tube heat exchangers		4 (13.33%)		
01	1.2 Functions of Various Parts of Shell and Tube Heat Exchanger	Concept of Shell and Tube Heat Exchanger			
	1.3 General Design Method of Shell & Tube Heat Exchanger				
	1.4 Tinker's Flow model				
	Process Design of Condenser and Reboiler				
02	2.1 Design of Condenser		4		
02	2.2 Selection Criteria for Horizontal and Vertical Condenser2.3 Process Design of Vertical Thermosyphon Reboiler	Concept of Heat Exchanger	(13.33%)		
	2.4 Selection Criteria for Kettle type reboiler and Vertical Thermosyphon reboiler				
	Process Design of Distillation Column 3.1 Introduction				
	3.1 Introduction 3.2 Selection of Equipment for Distillation		_		
	3.3 Distillation column Design	Concept of Packed Tower and Tray Tower	3		
03	3.4 Selection of key components for multi-component distillation		(10%)		
	3.5 Selection of Tray and It's Design Parameters	Concept of Tray Tower			
	3.6 Multi – Component Distillation Design Using Fenske – Underwood –	1 ,			
	Gilliland's (FUG) Method				
	Process Design of Sieve Tray Tower				
	4.1 Calculations for tower diameter & pressure drop of sieve tray tower		4 (13.33%)		
04	4.2 Jet Flooding & down comer Flooding	Concept of Tray Tower			
	4.3 Checking of conditions for weeping, down comer flooding, liquid entrainment	Concept of Tray Tower			
	4.4 Different types of weirs & down comers of tray tower, their selection criteria				
	Process Design of Absorbers				
	5.1 Introduction		3		
05	5.2 Criteria for Selection Among Different Types of Absorption Equipment	Concept of Absorption process	(10%)		
	5.3 Process Design of Packed Tower Type Absorber, Selection of packing	Concept of Packed Tower			
	5.4 Selection Criteria of Liquid Distributors, Redistributors & Packing support	1			
	Process Design of Different Absorption Equipment		2		
06	6.1 Process design of Venturi Scrubber		(6.67%)		
	6.2 Process design of Spray chamber or Spray tower type absorber				
	Introduction to Mechanical Design				
	7.1 Concept of Internal and External Design Pressure		2		
07	7.2 Design Stress and Design Temperature		3 (10%)		
	7.3 Static and Rotary Equipments, Different Types of Static Equipments 7.4 Joint Efficiency, Radiography				
	7.4 John Efficiency, Radiography 7.5 Corrosion Allowance				
	Mechanical Design of Pressure vessel	ı			
	8.1 Mechanical Design of Shell		-		
08	8.2 Different Types of Head and Their Selection Criteria		3		
	8.3 Mechanical Design of Heads		(10%)		
	8.4 Different Types of Nozzles, Their Selection Criteria				
Mechanical design of Storage Tank					
00	9.1 Capacity of Storage Tank, It's Diameter and Height		2		
09	9.2 Design of Shell and Bottom Plate for Storage Tank		(6.67%)		
	9.3 Design of Self Supported Roof				
	Design of Supports				
10	10.1 Mechanical Design of Bracket Support		2		
 	10.2 Mechanical Design of Skirt Support		(6.67%)		
	10.2 1.1001milloui Douigh of Milit Dupport				

Sr No.	Practical Title	Link to Theory Syllabus
1	Process design suitable heat exchanger for no phase change using MS Excel.	Unit 1
2	Process design suitable condenser for given duty using MS Excel.	Unit 2
3	Determine number of trays in distillation column by FUG method using MS Excel.	Unit 3
4	Determine sieve tray tower diameter and pressure drop using MS Excel.	Unit 4
5	Process design venturi scrubber using MS Excel.	Unit 6
6	Mechanical design of nozzle pad using MS Excel.	Unit 8
7	Determine heat exchange area, heat duty for given heat exchanger using DWSIM.	Unit 1
8	Design absorption column for given duty using DWSIM.	Unit 5
9	Mechanical design of pressure vessel for given duty using MATLAB.	Unit 8
10	Mechanical design of bracket support using MATLAB.	Unit 10

	_	·	Practical Evaluation Scheme by Academ Category Wise and it's Marks Distribution		
L:	3	T:	0	P:	2

Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks.
Each Test Syllabus Weightage: Range should be 20% - 30%

Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage
Theory			MCQ	19%	25
Theory	3		Theory Descriptive	26%	35
Theory	3		Formulas and Derivation	0%	0
Theory			Numerical	30%	40
Expected Theory %	75%	4	Calculated Theory %	75%	100
Practical	1		Individual Project	13%	50
Practical			Group Project	0%	0
Practical			Internal Practical Evaluation (IPE)	13%	50
Practical			Viva	0%	0
Practical			Seminar	0%	0
Expected Practical %	25%		Calculated Practical %	25%	100
Overall %	100%			100%	200

Course	Outcome		
1	Design process equipment and modify the design of existing equipment to new process conditions or new required capacity.		
2	Build a bridge between theoretical and practical concepts used for designing the equipment in any process industry.		
3	Create understanding of equipment design with mechanical concept.		
4	Review the importance of design concepts in process industry.		
Suggest	Suggested Reference Books		
1	Introduction to Process Engineering and Design by S B Thakore and B I Bhatt, Tata McGraw Hill		
2	Illustrated Process Equipment Design, S B Thakore and D A Shah, Atul Prakashan		
3	Plant Design and Economics for Chemical Engineers, M. S. Peters and K. D. Timmerhaus, McGraw - Hill		
4	Perry's Chemical Engineers, Don W. Green, Robert H. Perry, McGraw -Hill		
5	Joshi's Process Equipment Design, M.V.Joshi & V V Mahajan, Trinity Publication		