LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Chemical Engineering (708)

Bachelor of Engineering (B.E.) - Semester – V

Course Code:	017083501		Teaching Scheme				
Course Name:	Transport Phenomena		Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
Category of Course:	Professional Core Course (PCC)		2	0	0	2	20
Prerequisite Course:	Fluid Mechanics, Heat Transfer, Mass Transfer, Mathematics		3	U	U	3	30

	Syllabus					
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teaching Hours		
	Introduction to Transport Phenomena			2		
01	1.1 Concept and Industrial Relevance			(7%)		
	1.2 Classification of Transport Processes					
	1.3 Conservation Laws					
	Introduction to Momentum Transport	Introduction to Fluid		-		
	2.1 Molecular Momentum Transport	Mechanics (017083302- Unit-1.3)		3		
02	2.2 Temperature and Pressure Dependence of Viscosity	Fluid Flow Phenomena (017083302-Unit-2.1)		(10%)		
	2.3 Viscosity Prediction for Gases and Liquids	(01700202 0111 2.1)				
	2.4 Newton's Law of Viscosity	Fluid Flow Phenomena (017083302-Unit-2 3)				
	2.5 Convective Momentum Transport	(017002002 0111 2.0)				
	Shell Momentum Balance and Velocity Distribution in Lamina	r Flow				
	3.1 Shell Momentum Balance and Boundary Conditions			2		
03	3.2 Flow of Falling Film			3 (10%)		
05	3.3 Flow Through Circular Pipe			(1070)		
	3.4 Flow Through Annulus					
	3.5 Flow Over Moving Plate					
	Equation of Changes	Γ		2		
04	4.1 Equation of Continuity	Baisc Equation of Fluid Flow (017083302-Unit- 3.2)		3 (10%)		
	4.2 Equation of Motion					
	4.3 Navier Stokes Equation					
	Introduction to Energy Transport					
05	5.1 Molecular Energy Transport	Introduction to Three modes of Heat Transport (017083403-Unit-1.1)		3 (10%)		
	5.2 Temperature and Pressure Dependence of Thermal Conductivity	Conduction (017083403- Unit-2.2)				
	5.3 Fourier's Law					
	Shell Energy Balance and Temperature Distribution in Solids					
	6.1 Shell Energy Balance & Boundary Conditions					
	6.2 Heat Conduction with Electrical Heat Source	Conduction (017083403- Unit-2.3)		2		
06	6.3 Heat Conduction with Chemical Heat Source	Conduction (017083403- Unit-2.3)		(7%)		
	6.4 Temperature Distribution in Two Concentric Cylinders					
	6.5 Heat Conduction Through Composite Wall	Conduction (017083403- Unit-2.3)				
	Convective Heat Transfer					
07	7.1 Free and Forced Convection	Forced Convection		4		
07	7.2 Natural Convection Heat Transfer Governing Equation	(01/083403-Unit-5.1) 		(13%)		
	7.3 Flow Over Flat Plate					
	Introduction to Mass Transport					
08	8.1 Molecular Mass Transport	Introduction to Mass Transfer (017083402- Unit-1.1)		3 (10%)		
	8.2 Equation of Molecular Mass Transport	Molecular Diffusion in Fluids (017083402-Unit- 2.2)				

	8.3 Temperature and Pressure Dependence of Diffusivity	Molecular Diffusion in Fluids (017083402-Unit- 2.5)			
	Shell Mass Balance and Concentration Distribution in Solids				
	9.1 Shell Mass Balance and Boundary Conditions			4 (13%)	
09	9.2 Diffusion Through Stagnant Gas Film				
	9.3 Equimolar Counter Diffusion				
	9.4 Diffusion of A Through Non-Diffusing B				
	Mass and Molar Transport by Convection				
	10.1 Mass and Molar Concentration			3 (10%)	
10	10.2 Mass Average and Molar Average Velocity				
	10.3 Molecular Mass and Molar Fluxes				
	10.4 Convective Mass and Molar Fluxes				

Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)					
L:	3	T:	0	P:	0
Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%					
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage
Theory			MCQ	40%	40
Theory	- 3		Theory Descriptive	10%	10
Theory			Formulas and Derivation	50%	50
Theory			Numerical	00%	00
Expected Theory %	100%	100% 3	Calculated Theory %	100%	100
Practical			Individual Project	0%	0
Practical			Group Project	0%	0
Practical	0		Internal Practical Evaluation (IPE)	0%	0
Practical			Viva	0%	0
Practical			Seminar	0%	0
Expected Practical %	0%		Calculated Practical %	0%	100
Overall %	100%			100%	100

Course Outcome				
1	To understand the fundamentals of transport phenomena, including momentum transport and laminar flow analysis, to comprehend industrial			
	processes and their implications accurately.			
2	To achieve proficiency in fundamental transport phenomena, encompassing equations of continuity, motion, and energy transport principles, for			
	comprehensive analysis of temperature distributions and heat conduction scenarios in solids			
3	To achieve proficiency in convective heat transfer and mass transport principles to analyze heat and mass transfer phenomena in various scenarios			
	effectively.			
4	To analyze and solve complex problems related to mass transfer in solids and fluids, contributing to advancements in various engineering fields.			
Suggested Reference Books				
1	"Transprt Phenomena", R. Byron Bird, John Wiley & Sons (Asia) pvt. Ltd. 2nd Edition.			

2	"Transport Processes and Separation Process Principles", Christie John Geankoplis, PHI Learning Private Limited., New Delhi, 4th Edition,
3	"Fundamentals of Heat and Mass Transfer", Incropera, John Wiley & Sons (Asia) pvt. Ltd. 6th Edition.
4	"Introduction to Transport Phenomena", W.J.Thomson, Pearson Education Asia, New Delhi, 2001.

https://nptel.ac.in/courses/103/105/103105128/ https://nptel.ac.in/courses/103/103/103103146/