LOK JAGRUTI UNIVERSITY (LJU)
 INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Chemical Engineering (708)
Bachelor of Engineering (B.E.) - Semester - II

Course Code:	017081291	Teaching Scheme				
Course Name:	Mathematics - II	Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
Category of Course:	Basic Science Course (BSC)	3	2	0	5	50
Prerequisite Course:	Mathematics - I (017081191)					

Syllabus				
Unit No.	Topic	Prerequisite Topic	Successive Topic	Teaching Hours
01	Matrices			$\begin{gathered} 7 \\ (14 \%) \end{gathered}$
	1.1 Elementary row operations of matrices	---	---	
	1.2 Row and reduced row echelon form	---	---	
	1.3 System of linear equations	---	Introduction of theOptimizationProblems(017083602-Unit-1),Optimization of UnconstrainedFunctions(017083602-Unit-4),Introduction ofModeling(017083701-Unit-1),Introduction ofModeling(017083701-Unit-9)	
	1.4 Homogeneous system of linear equations	---		
	1.5 Non-homogeneous system of linear equations	---		
	1.6 Inverse of Matrix (Using Gauss-Jordan Method)	---	---	
	1.7 Eigen values \& vectors	Factorization(017081191-Unit1)	---	
	1.8 Diagonalization of matrix (Only for Non-symmetric Matrix)		---	
	1.9 Cayley-Hamilton theorem		---	
02	Fourier Series			$\begin{gathered} 5 \\ (10 \%) \end{gathered}$
	2.1 Periodic function	Basic integration (017081191-Unit-3)	---	
	2.2 Dirichlet's condition		---	
	2.3 Trigonometric series of sine and cosine function		---	
	2.4 Fourier series of a function of period 2L		---	
	2.5 Fourier series of even and odd function		---	
	2.6 Half range expansions		---	
03	Some Special Functions			$\begin{gathered} 4 \\ (8 \%) \end{gathered}$
	3.1Gamma function, Beta function. (And its Properties)	---	---	
	3.2 Bessel function, Dirac's Delta function (Definition only)	---	---	
	3.3 Error function and complementary Error function (Definition only)	---	---	
	3.4 Heaviside's function, pulse unit height and duration function (Definition only)	---	---	
	3.5 Rectangle function, Gate function (Definition only)	---	---	
	3.6 Signum function, Saw tooth wave function (Definition only)	--	---	
	3.7 Triangular wave function, Halfwave rectified sinusoidal function, Full rectified sine wave, Square wavefunction. (Definition only)	---	---	
04	Fourier Integral and Fourier Transform			$\begin{gathered} 4 \\ (8 \%) \end{gathered}$
	4.1 Define Fourier integral	Basic integration (017081191-Unit-3)	---	
	4.2 Cosine and sine integral		---	
	4.3 Define Fourier transform		---	
	4.4 Cosine and sine transform		---	
05	First Order Ordinary Differential Equations			$\begin{gathered} 5 \\ (10 \%) \end{gathered}$
	5.1 Geometric meaning of $y^{\prime}=f(x, y)$ direction fields	---	---	
	5.2 Exact differential equations and integrating factor	Basic differentiation \& integration(017081191-Unit-3)	Linear Programming and Applications(017083602-Unit8)	
	5.3 Linear differential equations		---	
	5.4 Bernoulli equations		---	
06	Higher Order Ordinary Differential Equations			$\begin{gathered} 7 \\ (14 \%) \end{gathered}$
	6.1 Linear differential equations of second and higher order	---	---	
	6.2 Homogeneous linear differential equations of higher order		---	
	6.3 Higher order non-homogeneous equations		---	
	6.4 Solution by undetermined coefficients		---	

Proposed Theory + Practical Evaluation Scheme by Academicians (\% Weightage Category Wise and it's Marks Distribution)

Proposed Theory + Practical Evaluation Scheme by Academicians (\% Weightage Category Wise and it's Marks Distribution)					
L:	3	T:	2	P:	0
Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20\% - 30\%					
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	\% Weightage	Marks Weightage
Theory	5	5	MCQ	15\%	15
Theory			Theory Descriptive	0\%	0
Theory			Formulas and Derivation	10\%	10
Theory			Numerical	75\%	75
Expected Theory \%	100\%		Calculated Theory \%	100\%	100
Practical	0		Individual Project	0\%	0
Practical			Group Project	0\%	0
Practical			Internal Practical Evaluation (IPE)	0\%	0
Practical			Viva	0\%	0
Practical			Seminar	0\%	0
Expected Practical \%	0\%		Calculated Practical \%	0\%	0
Overall \%	100\%			100\%	100

Course Outcome

	Upon completion of the course students will be able to

CO1 \quad Understand the techniques for analyzing and solving engineering problems involving matrices, perform matrix computation. The Fourier series of functions in the differential equation often gives some prediction about the behavior of the solution of differential equation. They are useful to find out the dynamics of the solution.
CO2 Fourier transform enables to identify substances and understand their chemical makeup by examining the unique spectral fingerprints associated with different molecular vibrations.
CO3 Apply effective mathematical methods for the solutions of higher order ordinary differential equations and working knowledge of basic application problems described by second order linear differential equations with constant coefficient. Use power series to solve differential equations appears in engineering filed
CO4 \quad Apply the Laplace transform as tools which are used to solve differential equations.

Suggested Reference Books

1	Elementary Linear Algebra, Applications version, Anton and Rorres, Wiley India Edition.

2 Advanced Engineering Mathematics, Erwin Kreysig, Wiley Publication.
3

Advanced Engineering Mathematics, Dennis G. Zill, $4^{\text {th }}$ edition, Jones and Bartlett Publishers.
$4 \quad$ Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers.

List of Open Source Software/Learning website

1	https://nptel.ac.in

