LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Chemical Engineering (708)

Bachelor of Engineering (B.E.) - Semester – I

Course Code:	017082101		Teaching Scheme				
Course Name:	Material Science		Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
Category of Course:	Engineering Science Courses (ESC)	ľ	E	0	0	_	50
Prerequisite Course:	Chemistry-I (017081101)		5	0	U	5	50

	S	yllabus		
Unit No.	Topic/	Prerequisite Topic	Successive Topic	Teaching Hours
01	Engineering Materials1.1 Types of bonds in material and its construction(Ionic bonds, Covalent bonds, Metallic bonds Dispersionbonds, Dipole bonds, Hydrogen bonds)1.2 Classification of materials1.3 Structure of materials(Crystallography, Important Terms of Unit Cell, Types ofCrystal System, Types of Unit Cell)1.4 Defects in crystalline materials	 Classification of materials (017082101-Unit-1.2)	Manufacturing of Sugar, Paints (017083304-Unit-7.1)	5 (10%)
02	 (Point Defect, Linear Defect, Surface Defect) Mechanical Properties of Materials 2.1 Mechanical Properties of Metal 2.2 Mechanical Properties of Polymer (Tensile Strength, Elongation to Break, Young's Modulus, Toughness) 2.3 Stress-strain Response (elastic, nonelastic and plastic deformation) 			2 (4%)
03	Thermodynamics of Materials3.1 Introduction to Thermodynamics(Thermodynamic Systems, Basic Thermodynamic PropertiesIntensive and Extensive Properties, Change of state, process,cycle, Pressure, Temperature, Specific Volume, Density,Specific Gravity, Energy, Power, Work, Specific Heat, HeatTransfer, Latent Heat, Enthalpy, Internal Energy,Thermodynamic Processes)3.2 Laws of Thermodynamics(Zeroth Law, First Law, Second Law, Third Law)3.3 Hess's Law of Constant Heat Summation and itsApplication3.4 Experimental Measurement of Heat of Reaction(Water Calorimeter, Bomb Calorimeter)	 Introduction to Thermodynamics (017082101-Unit-3.1)	Calculation of Entropy change during Phase Change (017082201-Unit-8.2)	5 (10%)
04	Metals and Its Alloys4.1 Introduction to Metal and its alloys4.2 Physical Properties of Metals4.3 Definition and purpose of alloy,4.4 Classification of alloys.4.5 Alloys of Cu and its industrial applications (Copper-zinc alloys -Brasses, Copper-tin alloys -Bronzes)4.6 Alloys of Al and its industrial applications (Duralium, Y-alloy, Mangalium, Hindalium)	 Introduction to metal and its alloys (017082101-Unit-4.1) 		6 (12%)
05	Corrosion 5.1 Introduction to Corrosion 5.2 Theories of corrosion (Direct Chemical Corrosion or Dry Corrosion, Electrochemical Corrosion or Wet Corrosion) 5.3 Types of corrosion 5.4 Protective measurements against corrosion – organic and inorganic materials, Inhibitors, Cathodic protection	 Types of corrosion (017082101- Unit-5.2)		5 (10%)
06	Non-Metallic Materials6.1 Classification of Nonmetallic materials6.2 Structure and configuration of Ceramics, Refractories & Insulators, polymers, copolymers, liquid crystals and amphiphiles6.3 Nano Composites: role of reinforcement-matrix interface.	 Classification of Nonmetallic materials (017082101-Unit-6.1) 	Manufacturing of Building Bricks, Refractory and its Types (017083304-Unit-9.4)	4 (8%)
07	Phase Transformations 7.1 Introduction to the phase rule			8 (16%)

	 (Gibbs phase rule, Cooling Curves, Construction of Phase Diagrams) 7.2 Phase diagrams of steel (Allotropy of Iron, Iron-Carbon Phase Diagram and constituents such as ,Ferrite , Austenite,Cementite, Pearlite , Ledeburite, Peritectic, eutectic and eutectoid reactions) 7.3 Phase diagrams of cupronickel 7.4 The applications of phase diagrams (Lever Rule) 	Introduction to the phase rule (017082101-Unit-7.1) Introduction to the phase rule (017082101-Unit-7.1) 	Criteria for Phase Equilibrium (17083301- Unit-5.2)	
08	Electronic Properties of Materials8.1 Introduction to Electronic Properties(Ohm's law, Resistance, Current, Electric Field, Electrical Conductivity8.2 Free Electron Theory (Classical free electron theory, Assumptions of classical free electron theory, Success and Drawbacks of free electron theory)8.3 Fermi Energy (Fermi energy, Fermi level , Fermi function under different conditions of temperature and Fermi energy)8.4 Hall effect, Dielectric Behaviour8.5 Piezo- and Ferro-electric Behaviour	 Introduction to Electronic Properties (017082101-Unit-8.1) 		5 (10%)
09	Characterization and Measurements of Properties9.1 Introduction9.2 X-ray diffraction with reference to metals (Bragg's law, basic elements of X-ray diffractometers)9.3 Electron microscopy, composition analysis in electron microscopes with reference to metals (Transmission Electron Microscope-TEM, Scanning Electron Microscope -SEM)	 Spectroscopic techniques: Principles of Spectroscopy (017081201-Unit-3.1)		4 (8%)
10	Processing of Materials10.1 Introduction10.2 Heat treatment of ferrous and aluminum(Heat treatment of ferrous - Annealing, Normalizing, Hardening, Tempering, Case hardening , Surface hardening; Heat treatment aluminum - Solution heat treatment, Precipitation treatment, Annealing.10.3 Preparation of ceramic powders10.4 Evaporation and sputtering techniques10.5 Chemical vapour deposition, thin film growth phenomena	 Introduction (017082101-Unit- 10.1)	Settling and hardening of cement (017083304-Unit-9.2)	6 (12%)

	Proposed	l Theory +	Practical Evaluation Scheme by Acade	micians		
	(% W	Veightage (Category Wise and it's Marks Distribut	ion)		
L:	5	T:	0	P:	0	
Note: In Theory Gro Each Test will be of Each Test Syllabus	25 Marks.		+T4) will be conducted for each subject 20% - 30%	•		
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage	
Theory			MCQ	80%	80	
Theory	5		Theory Descriptive	20%	20	
Theory			Formulas and Derivation	0%	0	
Theory			Numerical	0%	0	
Expected Theory %	100%	-	Calculated Theory %	100%	100	
Practical		5	Individual Project	0%	0	
Practical	0	0		Group Project	0%	0
Practical				Internal Practical Evaluation (IPE)	0%	0
Practical			Viva	0%	0	
Practical			Seminar	0%	0	
Expected Practical %	0%		Calculated Practical %	0%	0	
Overall %	100%			100%	100	

Course	Outcome				
	Upon completion of the course students will be able to				
CO1	Understand the concept of chemical bonds, crystal structure, mechanical properties and basic thermodynamic properties in engineering materials.				
CO2	Learn the concept of physical properties, application and corrosive effect of ferrous and non-ferrous materials.				
CO3	Understand the classification and structure of nonmetallic materials and phase transformation diagrams of steel and copper alloys.				
CO4	Gain the knowledge of electronic properties, electron microscopy techniques and various processes to improve engineering material properties.				
Suggest	Suggested Reference Books				
1	Materials science by GBS Narang, Khanna Publishers, New Delhi.				
2	D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry				
3	Material science and metallurgy by O.P.Khanna., Publisher: Dhanpat rai publications				
4	Materials science by R.S.Khurmi, R.S.Sedha, S Chand & Co. Ltd, New Delhi				

List of Open Source Software/Learning Website				
1	https://nptel.ac.in			
2	https://www.edx.org/learn/materials-science			