

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171924 Semester – VII Subject Name: Principles of Combustion

Type of course: Professional Elective

Prerequisite: Zeal to learn the subject

Rationale: Applications of combustion exist in many field of Mechanical Engineering and therefore basic course on combustion may be helpful to the interested ones.

Teaching and Examination Scheme:

Ī	Teaching Scheme			Credits	Examination Marks				Total
	L	T	P	С	Theory Marks		Practical Marks		Marks
					ESE (E)	PA (M)	ESE (V)	PA (I)	
ſ	3	0	2	4	70	30	30	20	150

Content:

Sr.	Content	Total		
No.		Hrs		
1	Combustion and Thermochemistry: Introduction, Heat of reaction and formation, Free			
	energy and the equilibrium constants, Flame temperature calculations – Analysis & Practical			
	considerations, Sub and supersonic combustion thermodynamics – Comparisons & Stagnation			
	pressure considerations			
2	Chemical Kinetics: Introduction, Rates of reactions and their temperature dependence - The	10		
	Arrhenius rate expression & Transition state and recombination rate theories, Simultaneous			
	interdependent reactions, Chain reactions, Pseudo-first-order reactions and the "fall-off" range,			
	The partial equilibrium assumption, Pressure effect in fractional conversion, Chemical kinetics			
	of large reaction mechanisms – Sensitivity analysis, Rate of production analysis, Coupled			
	thermal and chemical reacting systems & Mechanism simplification			
3	Chemical and Thermal Systems: Constant pressure fixed mass reactor, constant volume	6		
	reactor, well stirred reactor, plug flow reactor, application to combustion system modelling			
4	Conservative Equations: Mass conservation, Species mass conservation, Multi component	6		
	diffusion, momentum conservation, Energy conservation, Conserved Scalar Concept			
5	Laminar Flames: Laminar Premixed Flames - Physical Description, Simplified Analysis,			
	Detailed analysis Factors influencing flame velocity and thickness, flame stabilization, ignition			
	Laminar Diffusion Flames – non reacting constant density laminar jet, jet flame, flame			
	lengths, soot formation and destruction, counter flow flames			
6	Turbulent Flames: Applications of turbulent flames, Definition of turbulent flame speed,			
	structure of turbulent premixed flames, wrinkled flame regime, flamelets, flame stabilization,			
	Jet Flames			

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171924

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
20	20	40	20	-	-		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. An Introduction to Combustion, Concepts and Applications, Stephen R. Turns, McGraw-Hill Education
- 2. Combustion, Irvin Glassman, Academic Press
- 3. Combustion Theory, Forman A Williams, Addison-Wesley
- 4. Combustion Physics, C.K. Law, Cambridge University Press
- 5. Combustion, Flames and Explosions of Gases, Bernard Lewis and Guenther von Elbe, Academic Press
- 6. Chemical Kinetics, Keith Laidler, Harper and Row

Course Outcomes:

Sr.	CO statement	Marks %
No.		weightage
CO-1	To comprehend combustion, types of flames and effect and control of combustion	10
CO-2	To apply the theories of chemical equilibrium	23
CO-3	To mass, momentum and energy conservation to combustion process and make	24
	calculations of various reactors	
CO-4	To apply concepts of laminar premixed and diffusion flames to appropriate reactive	23
	systems	
CO-5	To apply concepts of turbulent flames to appropriate reactive systems	20

List of Experiments:

- 1. Find the smoke point of different fuels.
- 2. Find the pour point and cloud point of various lubricants.
- 3. Test the performance of fuel pump with fuel pump test rig.
- 4. Study of various spray characteristics of fuel.
- 5. Study of flame stabilization at different equivalence ratio.
- 6. Study of laminar premixed flames.
- 7. Study of turbulent flames.
- 8. Model different H₂/O₂ mechanism and find equilibrium temperatures at different equivalence ratios.

Major Equipment: Fuel pump test rig, Bunsen Burner, Temperature measurement apparatus, Fuel supply system, Ignition system

List of Open Source Software/learning website: https://nptel.ac.in/course.php