LOK JAGRUTI UNIVERSITY (LJU)

L J INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Computer Engineering

Master of Engineering (M. E)

Semester: I

Branch: Computer Engineering (Software Engineering)

Course Code:	20-CE-PG-049010102
Course Name:	Advanced Data Structures
Category of Course:	Core
Prerequisite Course:	UG level course in Data Structures

Teaching Scheme				
Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
3	0	2	4	40

Course	Objectives
1	The student should be able to choose appropriate data structures.
2	Students should be able to understand the necessary mathematical abstraction to solve problems.
3	Familiarize with algorithmic techniques such as brute force, greedy, and divide and conquer.
4	Apply advanced abstract data type (ADT) and data structures in solving real world problems.
5	To get accustomed with various programming constructs such as divide-and-conquer and dynamic programming.
6	To learn new techniques for solving specific problems more efficiently and for analyzing space and time requirements.
7	Analyze and apply graph data structure to real-life problems

Syllabus			
Unit No.	Торіс	Prerequisite Topic	Teaching Hours
01	Dictionaries 1.1 Definition 1.2 Dictionary Abstract Data Type 1.3 Implementation of Dictionaries		3 (7%)
02	Hashing2.1 Review of Hashing, Hash Function2.2 Collision Resolution Techniques in Hashing2.3 Separate Chaining, Open Addressing2.4 Linear Probing, Quadratic Probing2.5 Extendible Hashing	- - -	5 (8%)
03	Skip Lists 3.1 Need for Randomizing Data Structures and Algorithms 3.2 Search and Update Operations on Skip Lists 3.3 Probabilistic Analysis of Skip Lists 3.4 Deterministic Skips		3 (10%)
04	Trees4.1 Binary Search Trees4.2 AVL Trees4.3 Red Black Trees, 2-3 Trees4.4 B-Trees, Splay Trees		6 (15%)
05	Computational Geometry5.1 Constructing a Priority Search Tree5.2 Searching a Priority Search Tree5.3 Quadtrees5.4 k-D Trees		4 (15%)
06	Heap-16.1 Balanced Search Trees as Heaps, Array-Based Heaps6.2 Heap-Ordered Trees and Half Ordered Trees6.3 Leftist Heaps, Skew Heaps	Binary Search Tree (20-CE-PG-101-Unit-3)	3 (7%)
07	Heap-27.1 Binomial Heaps7.2 Changing Keys in Heaps7.3 Multidimensional Heaps7.4 Heap-Related Structures with Constant-Time Updates		4 (8%)
08	Text Processing8.1 Sting Operations, Brute-Force Pattern Matching8.2 The Boyer- Moore Algorithm8.3 The Knuth-Morris-Pratt Algorithm		4 (12%)
09	Tries and Dynamic Programming 9.1 Standard Tries		5 (13%)

	9.2 Compressed Tries, Suffix Tries		
9.3 The Huffman Coding Algorithm			
	9.4 The Longest Common Subsequence Problem (LCS)		
	9.5 Applying Dynamic Programming to the LCS Problem		
	Recent Trends		
	10.1 Recent Trends in Hashing		3
10	10.2 Trees		(10%)
	10.3 Various computational geometry methods for efficiently solving the new		(10/0)
	evolving problem		

Course	Outcome	
1	Understand the implementation of symbol table using hashing techniques	
2	Develop and analyze algorithms for red-black trees, B-trees and Splay trees.	
3	Develop algorithms for text processing applications	
4	Identify suitable data structures and develop algorithms for computational geometry problems.	
Suggested Reference Books		
1	Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson, 2nd Edition, 2004	
2	Algorithm Design, M T Goodrich, Roberto Tamassia, John Wiley, 2002	
3	Advanced Data Structures, Peter Brass, Cambridge University Press, 1st Edition	
4	Data Structures and Algorithms, Narasimha Karumanchi,5 th Edition	
5.	Algorithms and complexity, H. S. Wil, Prentice hall.	
6	Introduction to Algorithms, T. H. Cormen, C. E. Leiserson, R. L. Rivest, Prentice hall	

Proposed Evaluation Scheme by Academicians (Percentage of Weightage out of 100%)			
Theory Descriptive Test	MCQ Test		Hands on Project
Formulas and Derivation Test	Numerical Test		Seminar

Practical Project/Hands On Project			
Sr. No.	List of Practical Projects	Linked with Unit	
1	Explain Dictionary as an Abstract Data Type. Implement Dictionary using suitable Data Structure.	Unit 1	
2	Consider telephone book database of N clients. Make use of a hash table implementation to quickly look up client's telephone number	Unit 2	
3	Write a program which creates Skip Lists. Implement Insert, Search and Update Operations in Skip-Lists.	Unit 3	
4	Write a program which creates Binary Search Tree. And also implement recursive and non recursive tree traversing methods in order, preorder and post-order for the BST.	Unit 4	
5	A Dictionary stores keywords & its meanings. Provide facility for adding new keywords, deleting keywords, updating values of any entry. Provide facility to display whole data sorted in ascending/ Descending order. Also find how many maximum comparisons may require for finding any keyword. Use Height balance tree and find the complexity for finding a keyword	Unit 4	
6	Write a program which creates Priority Search Tree. Implement Insert and Search Operations in this Tree.	Unit 5	
7	Given a heap, to implement Leftist Heap using java.	Unit 6	
8	Implement a program for String Matching using Boyer-Moore Algorithm on a text file content	Unit 8	
9	Implement a program for String Matching using Knuth-Morris-Pratt Algorithm on a text file content.	Unit 8	
10	Implement Longest Common Subsequence(LCS) Problem using Dynamic Programming Method. Show the DP table and also find the particular solution of given strings.	Unit 9	

List of Recommended MOOC Courses:

- 1) <u>https://www.coursera.org/learn/advanced-algorithms-and-complexity</u>?
- 2) <u>https://www.edx.org/course/c-advanced-data-structures</u>
- 3) https://onlinecourses.nptel.ac.in/noc21 cs21/preview

4) https://www.coursera.org/learn/advanced-data-structures?