LOK JAGRUTI UNIVERSITY (LJU)

L J INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Computer Engineering

Master of Engineering (M. E)

Semester: I

Branch: Computer Engineering (Software Engineering)

		Teaching Scheme				
Course Code:	20-CE-PG-049010103	Lecture	Tutorial (T)	Practical (P)	Credit	Total Hours
Course Name:	Machine Learning	(L)				
Category of Course:	Core					
Prerequisite Course:	Data Structures, Basics of Probability and Statistics	3	0	2	4	40

Course Objectives			
1	To understand the underlying fundamental concepts and techniques of Machine Learning.		
2	To be able to formulate machine learning problems corresponding to different applications.		
3	To understand a range of machine learning algorithms along with their strengths and weaknesses.		
4	To be able to apply machine learning algorithms to solve problems of moderate complexity.		
5	To apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by		
	applying the models.		
6	To gain experience of doing independent projects study and research.		

Syllabus				
Unit No.	Торіс	Prerequisite Topic	Teaching Hours	
01	Introduction 1.1 Motivation and Applications of Machine Learning 1.2 Challenges 1.3 Introduction and types of Unsupervised and Supervised Learning 1.4 Languages for Machine Learning		2 (05%)	
02	Linear Models for Regression2.1 Simple Linear Regression2.2 Multiple Linear Regression2.3 Non-Linear Regression2.4 Logistic Regression2.5 Decision Tree Regression		5 (15%)	
03	Linear Models for Classification3.1 Naïve Bayes3.2 K-Nearest Neighbours3.3 Classification Trees3.4 Decision Trees3.5 Support Vector Machines		5 (10%)	
04	Neural Networks4.1 Biological Neurons and Biological Neural Networks4.2 Perceptron Learning4.3 Activation Functions4.4 Back-propagation Neural Networks		4 (10%)	
05	Clustering 5.1 Applications of Clustering 5.2 K-means 5.3 Hierarchical Based 5.4 Self-Organizing Maps		4 (10%)	
06	Generative Models6.1 Gaussian Mixture models and latent factor models6.2 Beta-binomial model6.3 Maximum Likelihood Estimator		4 (05%)	
07	Ensemble Methods 7.1 Model Selection 7.2 Boosting 7.3 Bagging 7.4 Random Forests 7.5 Sparse Modeling and Estimation		5 (15%)	
08	Graphical Models 8.1 Bayesian Networks		4 (10%)	

	8.2 Inference in Graphical Models 8.3 Comparing directed and undirected graphical models	-	
	Markov and Hidden Markov models		
	9.1 Markov models and its applications		1
09	9.2 Hidden Markov models and applications]	4 (10%)
	9.3 Inference in HMMs]	
	9.4 Generalizations of HMMs		
	Recent Trends in ML		
10	10.1Recent trends in various learning techniques of machine learning		3 (10%)
	10.2 Introduction to Deep Learning		
	10.3 Basics of Semi-Supervised and Reinforcement Learning		

Course	Outcome		
1	Extract features that can be used for a particular machine learning approach in various applications.		
2	To compare and contrast pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach.		
	To mathematically analyze various machine learning approaches and paradigms.		
3	Be able to recognize the characteristics of machine learning that make it useful to real-world problems.		
4	Be able to use support vector machines.		
	Be able to apply unsupervised algorithms for clustering.		
5	Be able to apply the concept behind neural networks for learning non-linear functions.		
7	Be able to practically employ the generative models.		
8	Be able to practically employ Ensemble techniques.		
9	Be able to practically employ inference and learning algorithms of the hidden Markov model.		
10	Understand the recent trends of Machine Learning		
Suggest	Suggested Reference Books		
1	Machine Learning: A Probabilistic Perspective, Kevin Murphy, MIT Press, 2012.		
2	The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer		
	2009		
3	Machine Learning in Action, Peter Harrington, Manning, Dreamtech press		
4	Machine Learning for Big Data, Jason Bell, Wiley		
5	Machine Learning in Python, Michael Bowles, Wiley		
6	Machine Learning with TensorFlow for dummies, Matthew Scarpino, Wiley		
7	Python Machine Learning By Example, Yuxi Liu, Packt		
8	Advance Machine Learning with Python, John Hearty, Packt		
9	Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT Press		
10	Pattern Recognition and Machine Learning, Christopher Bishop, Springer, 2007.		
11	Tom Mitchell, "Machine Learning", Latest Edition, Mc-Graw Hill		
12	Shai Shalev-Shwartz, and Shai Ben-David, "Understanding Machine Learning",		
	Cambridge University Press, 2017		

Proposed Evaluation Scheme by Academicians (Percentage of Weightage out of 100%)				
Theory Descriptive Test	MCQ Test		Hands on Project	
Formulas and Derivation Test	Numerical Test		Seminar	

Practical Project/Hands On Project				
Sr. No.	List of Practical Projects	Linked with Unit		
1	Implement Classifying text with distance measures using Python.	Unit 1		
2	Implement decision trees to predict contact lens type using Python.	Unit 3		
3	Implement K-Means Algorithm using Python.	Unit 5		
4	Implement Classification with k-Nearest Neighbors using Python.	Unit 3		
5	Implement Random Forest Algorithm using Python.	Unit 7		
6	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	Unit 4		
7	Implement Simple Linear Regression using Python	Unit 2		
8	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm.	Unit 6		
9	Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.	Unit 8		
10	Implement Support vector machines using Python.	Unit 3		

List of Recommended MOOC Courses for this subject :

- 1. https://www.coursera.org/learn/machine-learning
- 2. https://www.edx.org/course/machine-learning-fundamentals-2
- 3. https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course

 4. https://www.coursera.org/learn/machine-learning-withpython?ranMID=40328&ranEAID=OyHlmBp2G0c&ranSiteID=OyHlmBp2G0c-WU81LlqCUnd1mqt6nl1hfg&siteID=OyHlmBp2G0c-WU81LlqCUnd1mqt6nl1hfg&utm_content=2&utm_medium=partners&utm_source=linkshare&utm_campaign=OyHlmBp2G0c