<u>Gujarat University</u> <u>Ahmedabad</u>

<u>B. Sc. Semester – III</u> <u>Syllabus for Physics Theory & Practical</u> (Effective from June 2018)

Unit	Physics Theory	Physics Theory	Physics Practical
	PHY – 201	PHY – 202	PHY – 203
	4 Credit	4 Credit	2.5 Credit
	Total 100 Marks Internal : 30 Marks External : 70 Marks	Total 100 Marks Internal : 30 Marks External : 70 Marks	Total 100 Marks Internal : 30 Marks External : 70 Marks
Unit – I	Solid State Physics	Mathematical Physics	A, B & C three groups :
Unit – II	Electronics	Classical Mechanics	Each group consists of 06 experiments.
Unit - III	Modern Physics and Elementary Quantum Mechanics	Nuclear Physics	Total 18 experiments. External Examination: 70 Marks
Unit - IV	Wave Optics	Dielectrics & Magnetostatic	Group B : 23 Marks Group C : 24 Marks Practical batch size: Maximum 15 students.

In order to give exposure of industry, research institute and higher learning in the field of Physics, Industrial / Institutional visit may be arrange. It is expected that students of S. Y. B. Sc. with Physics as one of the subject must visit the Industry / Research Institute / Institute of higher learning during either III or IV semester.

GUJARAT UNIVERSITY B. Sc. (PHYSICS) Semester III PHYSICS : PHY – 201 (4 Credit)

UNIT-I: Solid State Physics

A. The crystalline State: Crystalline, polycrystalline and glassy materials; Basis of crystal structure; Unit cell-Primitive cell structures; Symmetry operations- translation, point, hybrid operations; Classification of Crystal types-two dimensional crystal lattice and three dimensional crystal lattices; Indices of a lattice direction and a lattice plane (Miller indices); Crystal point groups and space groups, space groups; Common crystal structures, simple cubic structure, BCC, FCC, closed packed and hexagonal close-packed structure, diamond structure.

B. Reciprocal lattice and Crystal Diffraction : Reciprocal lattice; Bragg Law, Laue's interpretation of X-ray diffraction by crystals, Construction of reciprocal lattice, Relationship between a, b, c and a*, b*, c*, Experimental Diffraction Methods, Laue method, Rotating crystal method, powder method, Determination of lattice constants; Selection of incident beam.

Text book: Elements of Solid State Physics (2 Edition) by J. P. Srivastava, PHI Learning For A - Chapter 1. Art No. 1.1 to 1.7 For B - Chapter 3. Art. No 3.1, 3.2, 3.3, 3.4, 3.5, 3.8.2, 3.9, 3.10

Reference Books:

- 1. Solid State Physics (6th Edition) by S.O. Pillai, New Age International Publishers
- 2. Solid State Physics (4th Edition) by S.L Kakani & C. Hemrajani, Sultan Chand & Sons
- 3. Introduction to Solid State Physics (7th Edition) by C. Kittle, Wiley (India)

UNIT-II: Electronics

Basic characteristics of the Transistor: Basic Transistor amplifier, Two diode analogy for a transistor, Transistor input characteristics, Transistor collector characteristics, collector cut off current I_{CEO} , Forward current transfer ratio CE , Permissible operating area of a transistor CE, The basic common base amplifier, CB, Forward current transfer ratio CB, relation between α and β , collector cut off current I_{CBO} , physical explanation of CB and CE amplifying action, reduction of CE leakage current to I_{CO} , common collector amplifier, identifying the transistor leads

The common emitter amplifier: Graphical analysis of CE class A amplifier, input and output resistance, effect of adding a class A amplifier, conversion efficiency of class A amplifier with a direct coupled resistive load, phase relationship in CE amplifier, input waveform consideration, comparison of basic transistor amplifier

Solid state electronics Devices: Zener diode, Zener diode specification, the voltage regulator circuit, design of a voltage regulator circuit, effect of supply voltage variation, Zener break down mechanism, the tunnel diode, application of tunnel diode ,Introduction of silicon controlled rectifier and Uni junction transistor

Text Book: Electronics Devices and Circuits By Allen Mottershed, PHI

Article no, 9.1 to 9.15, 9.18, 11.1 to 11.6, 11.9, 6.1 to 6.6, 6.11, 6.12, 28.1, 28.5

Reference Book: Electronic Principles (7th Edition) by Albert Malvino & David J. Bates, TMcGHill Pub. Electronic Devices and Circuits by Sanjeev Gupta, Dhanpatrai & Sons

UNIT- III: Modern Physics and Elementary Quantum mechanics

A. Historical origins of quantum theory, Difficulties with Classical: models, optical spectra Black body radiation, Frank- Hertz experiment, Stationary states of atoms. The correspondence principle, Bohr atom, Spectroscopic series, Quantization of the orbits. The Elliptic Orbits, Particle in a box, rigid rotator, Harmonic oscillator, Compton effect, particle diffraction, Wave packets and Einstein De Broglie relation

Text book: Quantum Mechanics by Powel and Crasemann, Addison and Wesley

Articles Nos.: 1.1, 1.2, 1.3, 1.5, 1.7 to 1.10, 1.12 to 1.16, 2.1, 2.2, 2.7

Concept of Modern Physics, Arthur Beiser, TMH Edition

B. The Schrodinger equation and stationary states, a free particle in one dimension, Generalization to three dimensions, Operator correspondence And the Schrodinger equation for a particle subjected to force, Physical Interpretation of wave function, Normalization, Non normalizable wave functions and box normalization, conservation of probability.

Text book: A textbook of Quantum Mechanics, P.M. Mathews, K. Vankatesan

Article Nos. : 2.1 to 2.6

Reference books:

- 1. Concept of Modern Physics by Arthur Beiser, Tata McGraw Hill Edition
- 2. Principles of Modern Physics by A.K. Saxena, Narosa Publishing House
- 3. Modern Physics by Kenneth Krane, Jon Wiley & Sons

UNIT – IV: Wave Optics

A. Diffraction of Light (Fresnel class): Frensnel's half period zones, zone plate, difference between interference & diffraction,

B. Fraunhofer class: Fraunhofer diffraction at two slits, diffraction at N slits, Plane diffraction grating, Dispersive power of grating, Grating at oblique incidence.

C. Resolving power of optical Instrument: Resolving power, Rayleigh's criterion of resolution, resolving power of telescope, relation between magnifying power & the resolving power of telescope, Resolving power of a plane diffraction grating, difference between resolving power & dispersive power of grating, comparison of prism & grating spectra.

Text Book: Optics & atomic physics by Singh, Agrawal (Pragati Prakashan, Meerat)

For A - Chapter 7. Article Nos. : 7.3 and 7.5 For B - Chapter 8. Article Nos. : 8.6 to 8.8, 8.15,8.16 For C - Chapter 9. Article Nos. : 9.1 to 9.4, 9.8 to 9.10

Reference Books:

Optics by Ajay Ghatak, Tata McGraw Hill Ltd.
A Textbook of Optics by N. Subrahmanyam & Brij Lal (S. Chand & Company Ltd.)

GUJARAT UNIVERSITY B. Sc. (PHYSICS) Semester – III PHYSICS : PHY – 202 (4 Credit)

UNIT - I: Mathematical Physics

Fourier series: Introduction, Simple Harmonic motion & wave motion – Periodic functions, Applications of fourier series, Average value of a function, Fourier co-efficients, Dirchlet conditions, complex form of fourier series, other intervals, Even & odd functions, Parsevel's theorem, Applications/Numericals on Fourier series.

Text book: Mathematical Methods in Physical Sciences by Mary L. Boas (John Willey & Sons) Article Nos. : 7.1 to 7.8. 7.11

Reference Book:

1. Mathematical Physics by H.K. Das, S. Chand Publishing Co.

2. Mathematical Physics by Satya Prakash, Pragati Prakashan

UNIT – II: Classical Mechanics

Motion in a Central force field: General features of the motion, Motion in an inverse square law force field, Equation of the orbit, Kepler's laws of planetary motion

Collision of particles : Elastic & inelastic scattering, Elastic Scattering : Laboratory & Centre of mass system, Kinematics of elastic scattering in the laboratory system, inelastic scattering, cross-section, The Rutherford formula

Text Book: Classical mechanics by R.G. Takewale & P.S. Puranik, Tata McGraw Hill Article Nos. : 5.2 to 5.6, 7.1 to 7.6

UNIT – III: Nuclear Physics

A. Physical tools: Introduction, Interaction between particles & Matter, brief survey, Detectors for Nuclear particles (i) Proportional counter (ii) The Geiger counter (iii) Scintillation counter (iv) Solid state or semi-conductor detectors (v) Cloud & Bubble chambers (vi) Spark chamber; Particle Accelerators : Need for an accelerator of charged particles, (i) Van de Graff Generator (ii) The cyclotron (iii) Synchrotron (iv) The Betatron; Beta ray spectrometer.

Text book: Nuclear physics, An introduction by S. B. Patel, New Age International (P) Ltd. For A - Chapter 1: Article Nos.: 1.1.1 to 1.1.5

Reference Book: 1. Nuclear Physics by D.C. Tayal, Himalaya Publishing House

UNIT – IV: Dielectrics & Magnetostatics

A. Electrostatics in dielectrics: Polarization, Laws of electrostatics field in presence of dielectrics, Energy of the field in the presence of a dielectric, Boundary conditions, Gaseous non polar dielectrics, Gaseous polar dielectrics, Non- polar liquids,

B. Magnetostatics: Magnetic effects, The magnetic field, force on a current, Biot Savart law, The laws of magnetostatics, the magnetic potentials, Magnetic dipole in non-uniform magnetic field, Magnetic vector potential due to a small current loop, Magnetic media, Magnetisation, Magnetic field vector, Magnetic susceptibility & permeability, Boundary conditions, Uniformly magnetized sphere in external magnetic field, A comparison of static electric & magnetic fields

Text Book: Electromagnetics by B. B. Laud, Willey Eastern Limited

For A - Chapter 2: Article Nos. : 2.7 to 2.13 For B - Chapter 4: Article Nos. : 4.1 to 4.9, 4.11 to 4.20 **Reference books:**

 Introduction to Electrodynamics by D. J. Griffith (3 edition), rdPHI learning
Electromagnetic Theory & Electrodynamics by Satya Prakash, Kedar Nath Ram Nath, Meerut

GUJARAT UNIVERSITY B. Sc. (PHYSICS) Semester – III

PHYSICS PRACTICAL : PHY – 203 (2.5 Credit)

Group A:

- 1. Y-by Koening's method.
- 2. Wavelength of prominent spectral lines by diffraction grating.
- 3. Flatness of plate by Newton's ring.
- 4. Resolving power of telescope.
- 5. Numerical Study of Oscillatory Motion.
- 6. Wavelength of light using Hartmann formula.

Group B:

- 1. Figure of Merit of a mirror galvanometer.
- 2. C1/C2 by Desauty's method.
- 3. Zener diode as a voltage regulator.
- 4. h-parameters of CE transistor.
- 5. UJT.
- 6. Load line and determination of Q point for BJT.

Group C:

- 1. Absorption coefficient of liquid using photocell.
- 2. Study of electron diffraction pattern.
- 3. Resonance pendulum.
- 4. Fourier Analysis.
- 5. L by Maxwell's bridge.
- 6. Liquid Lens.

A, B & C three groups: (Total 100 Marks: Internal 30 marks, External 70 Marks)

Each group consists of 06 experiments.

Total 18 experiments.

External Examination: 70 Marks

Group A : 23 Marks Group B : 23 Marks Group C : 24 Marks

Practical batch size: Maximum 15 students.